Tagged: Electrical grid

Low Voltage Active Filter as a Medium Voltage STATCOM for Windpower

Fortum Kville Power station

Kville power station compenstated by Comsys STATCOM design.

When the 32 MW Kville wind power station was being built in Sweden, the local grid owner Fortum was looking for alternatives for inductive compensation.  The long underground cable length cause a dynamic capacitive reactive power problem that normally is compensated using a large MV inductor. The inductor is very large and costly device at these sizes and Fortum wished to investigate other alternatives.

Comsys used its extensive knowledge from MV applications in applying its liquid cooled low voltage Active Filter with a step up transformer to create a 2,5 MVA STATCOM solution to solve the problem. If applied correctly, an active technology is very compact and flexible enabling high availability. Comsys liquid cooled modular design offers a high degree of redundancy and availability as the modules can be operated individually.

A further complication was the requirement to measure at the PCC on the 130 kV level so the Low Voltage ADF STATCOM worked through two step-up transformers. After extensive simulations by Comsys, the system was designed and supplied through the turn key integrator Siemens.

Comsys modular design AHF

Comsys P700 modular STATCOM solution

The active filters where installed in an existing building and the step-up transformer was installed outside, saving valuable indoor space and requiring no additional transformer cooling.

The solution dynamically compensates the capacitive reactive power and keeps it in line with the utility’s requirement. Due to the STATCOM following the load dynamically and observing both voltage and current, optimal grid conditions are ensured during all operating conditions.

The investment cost was reported to be lower than using the customized inductor solution proving the competitiveness of small active STATCOM versus passive options.

The ADF P700 STATCOM is a perfect solution in a dynamic environment such as wind farms. It is as cost effective and compact as a passive solution but with superior performance.

IEEE 519 and Active Harmonic Filters

Electric Grid

Electric Grid (Photo credit: Wikipedia)

Standards governing distiortion parameters in the electric grid such as IEEE 519, G5/4, EN 61000, EN 50160 and D-A-CH-CZ among others most often require voltage harmonic distortion to be below 5-8%. These are all recommended, not obligatory practices.

Although adherence to standards such as IEEE 519 is not obligatory, more and more utilities and other parties of interest are using these standards as a benchmark to place demands on their customers. This is a way for them to be able to guarantee disturbance free delivery on their end. It is also used as a part of an active environmental agenda to show a decreased energy usage and reduced energy costs for many energy intensive processes.

One way to meet the new requirements is to simply reduce the harmonics to an acceptable level. Many modern active harmonic filters can pinpoint the harmonic orders that are contributing, and the compensation power can be optimized to meet the requirements in the most cost efficient way.

The modern Active Harmonic Filter is one of the most efficient harmonic solutions the market today. Filters are commonly available in a 208 – 480V version and a 480 – 690V. The Active Harmonic Filter can be combined with 6 pulse drives and will be placed in parallel with the load, minimizing the need of compensation power to 20 – 30 % of the load. The parallel placement will also ensure the redundancy in the design, which is a major advantage in a critical applications. Modular solutions, which are now more commonly available gives a dynamic and agile solution to work for future improvements to existing machinery. This is all in keeping with the spirit of standards such as the IEEE 519 toward a sustainable energy future.