Category: Harmonic Filtering

Case story: How AHF put a stop to packaging manufacturer’s production outages
Background
One of Canada’s largest manufacturers of innovative and sustainable packaging products was facing multiple transformer failures and production stops due to power quality issues at one of its many sites. The manufacturer needed to find a way to eliminate these recurring problems and troublesome interruptions. Multiple studies on power quality were performed by different contractors. Comsys Partner, ADM Engineering, was one of the companies performing power studies and providing analysis report.
Challenge
The challenge facing ADM was to determine what was causing the periodic failures in the main transformers and to recommend a reliable remedy. Following site measurements and subsequent analysis of the data captured by ADM and Comsys, the root of the problem was identified. The culprit was the resonance caused by the interaction between the natural resonant frequency of the power system, tuned capacitor banks, and nonlinear loads. Based on these findings, ADM was able to recommend ADF as the only viable solution to the site’s persisting problems.
Solution
ADF P300 – Active Harmonic Filters engineered and assembled by ADM using PPM300 modules.

Result
The ADF solution has been operating successfully since January 2020, eliminating resonance and harmonics as well as providing near unity power factor. Cost savings alone have amounted to around CAD 30,000 per month by eliminating harmonics and correcting the power factor. Increased uptime and productivity provide even more value.
Key Results:
- Mill power outage frequency significantly reduced
- Oil cooled transformer runs much cooler and requires less frequent oil changes
- Significantly reduced running temperature of several transformers
- Reduced nuisance trips and blown fuses of 600V switchgear
- Reduced saturation of feeding transformers, reduces voltage variations to nominal values
Current THD – before & after installing ADF
Power Factor – before & after installing ADF

Machine drives system supply voltages before active filters installation
Machine drives system supply voltages after active filters installation
Small Active Harmonic Filters from Schneider
Schneider dedicated 3 meters of exhibition space to its active harmonic filters at the SPS fair in Nuernberg this year. Great to see that the big boys are catching on. Schneider is no newcomer to the field though, rather one of the biggest suppliers of active filters world wide. This is the first year they show these products at the SPS. This year small filters down to 20 A is a new offering from Schneider in the PCSn series. We assume this will broaden the application scope significantly.
Source: Schneider
For more info check out the PCSn flyer Schneider_PCSn_998-20306747_GMA

Global Active Filter Compensation
Comsys has released a application note explaining the detailed advantages of using central filtering of many drives rather than installing separate low harmonic drives. A central active harmonic filter is often the cheapest and most efficient answer to maintain code compliance.
Read the report here: Global-vs-Local-Compensation_Application_Note
Schaffner updates its modular active harmonic filters – Ecosine Active Sync
Schaffner launches an updated version of its rack mounted active harmonic filter with higher efficiency and heat tolerance as we understand.
Schaffner reports:
The modular design of ecosine active sync always allows a suitable filter size to be supplied and, in addition, the 60 A modules can be easily fixed to the wall or integrated into system control cabinets. Simply slide in and wire up – a filter from up to 300 A per cabinet is ready.
ecosine active sync in detail
- Most effective harmonic mitigation up to 50th order (odd and even). Below 5% THID achievable even for mixed and dynamic load profile.
- Most compact and modular design. Flexible and easy installation.
- Robust, reliable and suits the broadest temperature (power module up to 50°C) range with full performance.
- High efficiency (< 2.3% losses) and very low acoustic noise.
- Only air cooling for all product variants with IP 20 power module, IP 21 (roof kit) and IP 54 cabinet version.
- Reactive Power Compensation
- Load balancing
- Modular ready to use, retrofit integration in slide-technology cabinet
- Ultra-flexible mounting and installation options
Active Filter on offshore MPSV- case study
Comsys has supplied Active Harmonic Filters to multiple offshore supply vessels. Bourbon Offshore, one of the biggest operators of offshore service vessels is using active filtering on their Evolution series of MPSVs. Filtering is employed on the main busbar to comply with class regulations. For a full report on the project and the result see here:
Bourbon Offshore Case by Comsys
New Generation Passive Harmonic Filters – Ecosine Evo
Modular Passive Harmonic Filters from Schaffner – Ecosine Evo – the New Generation
The new PHF generation “ecosine evo” is designed for the most demanding harmonic mitigation tasks with front-end 6-pulse rectifiers.
Even partial load situations causing harmonic currents can be effectively mitigated. The introduction of a modular system allows the Ecosine Evo passive harmonic filter to deliver optimally tailored solutions for your particular installation. The solution is easily adapted by simply plugging in the suitable module where needed. For more information, watch this:
Active + Passive = Hybrid
Active Harmonic Filters are becoming cheaper and very competitive compared to other active mitigation solutions such as Active Front End, which we explained here. In some applications that are not too dynamic, a passive harmonic filter makes perfect sense to reduce the investment. A combination of active and passive filters can be the best solution to reduce the investment cost while still being able to cope with dynamic loads. In such an application the passive harmonic filter focuses on the dominant harmonic component. This solution is currently used by for example the German auto industry in their production lines.
PQ Nosswitz, a German power quality solutions firm, devised a system to allow a flexible combination of active harmonic filters and passive harmonic filters to enable the most flexible and cost efficient solution for every project.
Active Harmonic Filters Increase Productivity in the Paper Industry
Active Harmonic Filter Application in Ba Na Hills, Vietnam
Here is a great showcase of the effects of applying active harmonic filters on a cable car installation made by Power More in Vietnam. Ba Na Hills Mountain Resort are holders of three Guiness Records – Longest single rope cable car system, Longest distance between stations and Heaviest cable roll. For Ba Na Hills, power quality is a question of safety and service quality. With total harmonic distortion 5 times higher than the national regulated level, Ba Na Hills were facing several problems.
- Station to station communcation was interrupted
- Power factor penalties
- Damaged PFC capacitor units
- Inerference with PFC controller
- Reduced motor effeciency in generator mode to 50%
Applying ADF Power Tuning active filters from Comsys to battle both power factor correction and harmonic filtering resulted in:
- Eliminated risk of PFC failures
- Eliminated power factor penalties
- Increased motor efficiency to 100%
- Improved cable speed
Active Harmonic Filters – Buyer’s Guide
Active Harmonic Filters are growing in popularity as a method to mitigate power quality issues. There are several factors to consider when specifying an active harmonic filter. Typical applications for active filters are compensation of variable frequency drives and data-centers to reduce the load on UPS systems or compensating the effects of renewable energy sources on the grid.
What is an Active Harmonic Filter and what is its Application.
The general definition to describe this application is an analog or digital device that measures the power quality on the grid side. It then injects current to compensate any unwanted deviations from the standard 50 or 60 Hz supply. Deviations can be mitigated in full or partially.
What Factors to Consider when Specifying an Active Harmonic Filter
Sensor or sensorless control
There are suppliers that provide sensorless control eliminating the need for current transformers. This solution reduce the installation cost. Sensorless is not used in all applications so make sure to check the application with the supplier. Sensorless control or voltage control as it is sometimes defined compensates the total THD. It is not possible to select a single source such as a single VFD. On the plus-side it is possible to protect a sensitive subgrid from a noisy primary grid.
Losses
Depending on design, the filter has higher or lower losses. Check the losses as this will reduce the Life Cycle Cost on your investment. Some active filters have up to 1%-point lower losses, which depending on your user profile, means a potential for considerable financial savings if calculated LCC over 5 years.
Harmonic Compensation Capacity
Harmonics are normally seen in the odd. Common capacity for active filters is 25th or 50th harmonic. Sometimes there is a claim of being able to mitigate the 51st harmonic, which has little value as harmonic order of 51 and above are normally not important.
Harmonics above the 50th are more difficult to measure as there are few PQ-meters that can handle such orders. There are however quite common sources such as Active Front End Drives that cause switching ripple above 3kHz, above the 60th harmonic (or above the 50th in 60 Hz systems).
There are a few Active Harmonic Filters capable of compensating such frequencies. Choose a filter according to the needs specified by your measurements.
A filter’s capacity to compensate a certain harmonic order is only part of the story. Another important factor is de-rating, discussed below.
Response time
Some power quality phenomena occur extremely fast requiring the mitigation to be even faster. If your process is affected by fast flicker or transients, take special care to evaluate the response capacity of the filter. Flicker is a specific phenomena that normally requires special software to compensate flicker in a controlled environment.
Interharmonics
Interharmonics is commonly caused by syncronisation issues. If your installation includes such interharmonic sources, the type of active filter changes and the vendor has to be consulted. This is a common issue on some types of older wind turbines.
EMC
In Europe there are strict guidelines regarding EMC. If you want to be sure that the active filter does not interfere, the filter must be fitted with a properly tuned EMC-filter.
De-rating
An Active Harmonic Filter’s rating is normally defined at nominal load, meaning at 50/60Hz. As the filter works further up the harmonics its capacity compared to nominal starts to de-rate. The de-rating curve is documented by all serious suppliers and should be available if you ask them.
A de-rating of 50%, at say the 13th harmonic, means that a 100A filter only has the capacity to compensate 50A at the 13th. Naturally if you have harmonics of higher order it becomes more important to check the de-rating.
De-rating is a matter of how robustly the filter is designed. Some suppliers offer zero de-rating up to the 7th before capacity starts to fall.
Physical Footprint – How Much Cabinet Space is Required?
Most active filter suppliers offer several alternatives regarding installation. Wall mount, Cabinet and IP00 modules to install in cabinets. Efficient use of cabinet space translates to lower system cost. Some filters have a modular design and can be enhanced with further capacity without adding to the footprint.
Modularity
As mentioned, a modular design of your Active Harmonic Filter enables you to adapt the filter to potential changes in your future power compensation needs. The modular design means that you can easily add to the filter’s capacity within the existing cabinet, saving both cost and space.
Commissioning Software
Does the filter have built in commissioning software? Commissioning and service of Active Filters can be quite time consuming. Ask for a review of the support software included in the machine. Some suppliers have an extra charge for the necessary software. Minimum required functionality should be that the system performs a self-check of Voltage and CT phase order, CT polarity check, self-diagnosis, and self-calibration. Such features will quickly find installation errors before they can cause problems and will also shorten the needed commissioning time.
If the filter does not have this type of support software the commissioning becomes much more complex and might even require external support adding to the system cost.
HMI
There are different HMI setups. Some have a very simple front HMI while others include graphs showing the current and voltage waveforms and many further functions. A great added value is to have at least a web-based interface allowing in-depth monitoring and control functionality. Then no extra PQ-meter is necessary.
Smart Grid Functionality
Active filters have a built in rudimentary power and power quality meter to calculate the required compensation. Some filter manufacturers make use of this fact and enable the user to connect all filters on site and company wide through a web based architecture. An operator can then have an overview of the status of all connected cabinets and log them. This enables the possibility to log events that could or should have caused production disturbances, status monitoring of individual filters as well as remote control capability. Email and text alerts to dedicated service personnel from the filter reduce response time dramatically.
IP/NEMA Class and Water Cooling
Water-cooled Active Filters enable very good cooling of the IGBTs, the most critical component in the Active Filter. Water-cooling reduces overheating immensely, which increases availability in the same way as for Variable Frequency Drives. The power density of the installation is also improved.
Voltage
Active Harmonic Filters are offered in a range of voltages. Most common ranges are 380–415V, up to 480 V. Higher voltages up to 600 and 690V are also available without step-up transformer, reducing foot print. Some suppliers have the capacity to supply MV ratings as well, normally using a step-up transformer. The active filter can then act as STATCOM.
Battery add-on
In recent years several suppliers are offering battery connectivity to create a battery energy storage system for FCR and peak shaving. The active filters on-load capabilities are perfect for grid connectivity applications.
Sensorless Voltage Control
Recently a new type of sensorless solution make it much easier to install as no CTs are required which is standard for active harmonic filters. This method can not control specific frequencies but can be used to even mitigate noise from the grid.
Resonance Damping
Some filters offer resonance damping making them ideal in highly complex situations.