Tagged: Power quality

Enabling a seamless Champions League final in Istanbul with Active Harmonic Filter

Service Partner: Wömner Power Quality Solutions
Location:Istanbul, Turkey
Industry: Sports Venue
Timeline: 2020-2023

Background

When Istanbul was selected to host the 2020 Champions League Final, the Turkish Football Federation contracted Renaissance Construction to renovate the city’s Olympic Stadium as the venue. Although the final was delayed until June of 2023 due to the pandemic, the work proceeded as scheduled and Wömner Power Quality Solutions, Comsys’s partner in Istanbul, was selected to ensure that no power quality issues would disrupt the prestigious event.

Challenge

Predicting what could go wrong during the final is difficult for various reasons. Firstly, power is peak during games, which take place only two or three times a month at most. Secondly, the stadium is supplied from several medium voltage (MV) substations, each having two backup transformers making the measurement of energy consumption complex due to the uncertainty of not knowing which of the three transformers is being utilized. Thirdly, a total of 25 km of MV underground cable creates 180 kVAR of capacitive power per hour. During game time reactive power is balanced, but on no load condition capacitive power is there and because it is on MV level it cannot be easily measured due to the position of the meter, which is 6 km away. And finally, two large scoreboards with a lot of power electronic equipment were installed for the final, creating harmonics.

The customer’s main priority was on harmonics and trips due to these, as well as on reactive power management. Normally, other power quality issues are quite small.

Solution

A total of seven Comsys ADF P100N active harmonic filters were installed by Wömner; two at each of the three main substations for the stadium, and one additional unit at a smaller utility substation.

Result

Since the filters were installed in early 2020, the customer has experienced no problems due to capacitive penalties and game nights have been safe and secure. The Active Harmonic Filter technology is successfully compensating harmonics and preventing capacitive penalties.

Merus Power case study on EV-charging station

Segment background

The battery-operated truck industry has emerged as a transformative force within the transportation sector, offering a sustainable and eco-friendly solution to the longstanding challenges of heavy-duty vehicle emissions and fossil fuel dependency. These electric trucks, powered by advanced lithium-ion battery technology, are gaining momentum as an integral component of modern urban logistics and long-haul transportation. With the promise of zero-emission operation and significant reductions in operating costs over the long term, battery-operated trucks are not only aligned with environmental objectives but also represent a strategic choice for businesses aiming to optimize their fleet operations, comply with tightening emissions regulations, and contribute to a cleaner and more sustainable future for the global transportation industry.

Challenges at the customer’s facility

Driven by the need to comply with stringent grid code requirements, our customer recognized the necessity of improving power quality at their electric vehicle (EV) charging station. Specifically, they were facing challenges with harmonics, a common issue arising from the use of both AC and DC charging systems. The AC chargers, converting AC power to DC for the vehicles, were causing harmonic distortions in the electrical grid. DC fast chargers further compounded these harmonic problems, even introducing voltage fluctuations. To rectify these issues and meet grid code compliance, solutions like harmonic filters and active power factor correction were essential. Effective management of these harmonics is not only critical for maintaining the stability of the customer’s EV charging station but also impacts the integrity of the surrounding electrical infrastructure.

Our Merus® Solution

To address the harmonic issues in our customer’s EV charging station, the recommended solution is the use of Merus® A2 Active Harmonic Filters. Suggested and installed by our local partner, Power Capacitors Ltd, the Merus® A2 offers an efficient way to improve power quality. These filters are specifically designed to manage the harmonics introduced by both AC and DC chargers, thereby enhancing the system’s overall performance and reliability.

Incorporating Merus® A2 into the electrical setup involves its strategic placement to effectively reduce harmonic distortions from the charging units. By actively isolating and filtering out specific harmonic frequencies, the Merus® A2 contributes to improved power quality, reduced voltage distortions, and a more stable electrical grid. The IP31 design of Merus® A2 ensured a seamless and straightforward installation, aligning well with the site’s indoor setting and existing infrastructure.

Segment / Application

EV-charging station for battery operated trucks

Location

United Kingdom

Power quality issue

  • High current harmonic distortion

Merus® Solution

Merus® A2 – Active Harmonic Filter

Merus® A2 is a scalable, versatile, and durable active harmonic filtering solution designed and manufactured in Finland using innovative Merus® technology.

Read more

Customer Benefits

  • Grid code compliance
  • Reduced wear and tear on electrical components
  • Reduced maintenance costs
  • Longer lifetime of sensitive electrical equipment
  • Improved system efficiency
  • Optimized performance of the charging system

Results after installation

Since installing the Merus® A2 Active Harmonic Filters, our customer’s EV charging station has experienced significant improvements, including reduced wear on electrical components and extended equipment life. These improvements have resulted in a more efficient system that not only complies with demanding grid codes but also contributes to a more sustainable electric vehicle charging infrastructure. The expertise provided by our local partner, Power Capacitors Ltd., was invaluable in achieving these outcomes.

The Merus® A2 Filters have effectively minimized the harmonic distortions originating from AC and DC chargers. This optimization has led to increased energy efficiency and lower maintenance costs. Thanks to these advancements, the customer’s EV charging station now operates with improved power quality and grid stability, fulfilling industry standards for both performance and sustainability.

Case story: How AHF put a stop to packaging manufacturer’s production outages

Background

One of Canada’s largest manufacturers of innovative and sustainable packaging products was facing multiple transformer failures and production stops due to power quality issues at one of its many sites. The manufacturer needed to find a way to eliminate these recurring problems and troublesome interruptions. Multiple studies on power quality were performed by different contractors. Comsys Partner, ADM Engineering, was one of the companies performing power studies and providing analysis report.

Challenge

The challenge facing ADM was to determine what was causing the periodic failures in the main transformers and to recommend a reliable remedy. Following site measurements and subsequent analysis of the data captured by ADM and Comsys, the root of the problem was identified. The culprit was the resonance caused by the interaction between the natural resonant frequency of the power system, tuned capacitor banks, and nonlinear loads. Based on these findings, ADM was able to recommend ADF as the only viable solution to the site’s persisting problems.

Solution

ADF P300 – Active Harmonic Filters engineered and assembled by ADM using PPM300 modules.

ADF at site

Result

The ADF solution has been operating successfully since January 2020, eliminating resonance and harmonics

The ADF solution has been operating successfully since January 2020, eliminating resonance and harmonics as well as providing near unity power factor. Cost savings alone have amounted to around CAD 30,000 per month by eliminating harmonics and correcting the power factor. Increased uptime and productivity provide even more value.

Key Results:

  • Mill power outage frequency significantly reduced
  • Oil cooled transformer runs much cooler and requires less frequent oil changes
  • Significantly reduced running temperature of several transformers
  • Reduced nuisance trips and blown fuses of 600V switchgear
  • Reduced saturation of feeding transformers, reduces voltage variations to nominal values

Current THD - before & after installing ADF

Current THD – before & after installing ADF

Power Factor - before & after installing ADF

Power Factor – before & after installing ADF

20210107_153352

Machine drives system supply voltages before active filters installation

Machine drives system supply voltages before active filters installation

Machine drives system supply voltages after active filters installation

Machine drives system supply voltages after active filters installation

Active Harmonic Filter Application in Ba Na Hills, Vietnam

Here is a great showcase of the effects of applying active harmonic filters on a cable car installation made by Power More in Vietnam. Ba Na Hills Mountain Resort are holders of three Guiness Records – Longest single rope cable car system, Longest distance between stations and Heaviest cable roll. For Ba Na Hills, power quality is a question of safety and service quality. With total harmonic distortion 5 times higher than the national regulated level, Ba Na Hills were facing several problems.

  • Station to station communcation was interrupted
  • Power factor penalties
  • Damaged PFC capacitor units
  • Inerference with PFC controller
  • Reduced motor effeciency in generator mode to 50%

Applying ADF Power Tuning active filters from Comsys to battle both power factor correction and harmonic filtering resulted in:

  • Eliminated risk of PFC failures
  • Eliminated power factor penalties
  • Increased motor efficiency to 100%
  • Improved cable speed

Low Voltage Active Filter as a Medium Voltage STATCOM for Windpower

Fortum Kville Power station

Kville power station compenstated by Comsys STATCOM design.

When the 32 MW Kville wind power station was being built in Sweden, the local grid owner Fortum was looking for alternatives for inductive compensation.  The long underground cable length cause a dynamic capacitive reactive power problem that normally is compensated using a large MV inductor. The inductor is very large and costly device at these sizes and Fortum wished to investigate other alternatives.

Comsys used its extensive knowledge from MV applications in applying its liquid cooled low voltage Active Filter with a step up transformer to create a 2,5 MVA STATCOM solution to solve the problem. If applied correctly, an active technology is very compact and flexible enabling high availability. Comsys liquid cooled modular design offers a high degree of redundancy and availability as the modules can be operated individually.

A further complication was the requirement to measure at the PCC on the 130 kV level so the Low Voltage ADF STATCOM worked through two step-up transformers. After extensive simulations by Comsys, the system was designed and supplied through the turn key integrator Siemens.

Comsys modular design AHF

Comsys P700 modular STATCOM solution

The active filters where installed in an existing building and the step-up transformer was installed outside, saving valuable indoor space and requiring no additional transformer cooling.

The solution dynamically compensates the capacitive reactive power and keeps it in line with the utility’s requirement. Due to the STATCOM following the load dynamically and observing both voltage and current, optimal grid conditions are ensured during all operating conditions.

The investment cost was reported to be lower than using the customized inductor solution proving the competitiveness of small active STATCOM versus passive options.

The ADF P700 STATCOM is a perfect solution in a dynamic environment such as wind farms. It is as cost effective and compact as a passive solution but with superior performance.

AHF Compensates Thruster and Refrigeration Compressor

Danfoss used an Active Harmonic Filter to compensate the THD of their installed 960 kW of VFDs for thruster and refrigeration compressor on the fishing vessel Gitte Henning #8. The AHF ensured to keep the installation within class requirements. Read more at:

Danfoss VFDs on Gitte Henning #8

Active Harmonic Filter as a Tool to Save Money

Power quality mitigation products are not only used to fulfil regulations such as IEEE-519 and G5/4. They have actual effects saving both power and increasing productivity. This presentation by ABB exemplifies some of their early case studies indicating savings of up to 10%. Note that these savings compare to having no harmonic mitigation.

The cases below clearly show the great business value of implementing a high power quality standard within your facility.  The secondary effects of complying with IEEE 519 or similar standards enables the local grid to be dimensioned for less reactive power and harmonic current thus saving money through thinner cabling, smaller transformers etc. Power quality mitigation is not only a cost in the general investment calculation but a tool to save money.

ABB presentation: PQF-Energy_Savings

Active Harmonic Filters – Buyer’s Guide

Active Harmonic Filters are growing in popularity as a method to mitigate power quality issues. There are several factors to consider when specifying an active harmonic filter. Typical applications for active filters are compensation of variable frequency drives and data-centers to reduce the load on UPS systems or compensating the effects of renewable energy sources on the grid.Active Harmonic Filter

What is an Active Harmonic Filter and what is its Application.

The general definition to describe this application is an analog or digital device that measures the power quality on the grid side. It then injects current to compensate any unwanted deviations from the standard 50 or 60 Hz supply. Deviations can be mitigated in full or partially.

What Factors to Consider when Specifying an Active Harmonic Filter

Sensor or sensorless control

There are suppliers that provide sensorless control eliminating the need for current transformers. This solution reduce the installation cost. Sensorless is not used in all applications so make sure to check the application with the supplier. Sensorless control or voltage control as it is sometimes defined compensates the total THD. It is not possible to select a single source such as a single VFD. On the plus-side it is possible to protect a sensitive subgrid from a noisy primary grid.

Losses

Depending on design, the filter has higher or lower losses. Check the losses as this will reduce the Life Cycle Cost on your investment. Some active filters have up to 1%-point lower losses, which depending on your user profile, means a potential for  considerable financial savings if calculated LCC over 5 years.

Harmonic Compensation Capacity

Harmonics are normally seen in the odd. Common capacity for active filters is 25th or 50th harmonic. Sometimes there is a claim of being able to mitigate the 51st harmonic, which has little value as harmonic order of 51 and above are normally not important.

Harmonics above the 50th are more difficult to measure as there are few PQ-meters that can handle such orders. There are however quite common sources such as Active Front End Drives that cause switching ripple above 3kHz, above the 60th harmonic (or above the 50th in 60 Hz systems).

There are a few Active Harmonic Filters capable of compensating such frequencies. Choose a filter according to the needs specified by your measurements.

A filter’s capacity to compensate a certain harmonic order is only part of the story. Another important factor is de-rating, discussed below.

Response time

Some power quality phenomena occur extremely fast requiring the mitigation to be even faster.  If your process is affected by fast flicker or transients, take special care to evaluate the response capacity of the filter. Flicker is a specific phenomena that normally requires special software to compensate flicker in a controlled environment.

Interharmonics

Interharmonics is commonly caused by syncronisation issues. If  your installation includes such interharmonic sources, the type of active filter changes and the vendor has to be consulted. This is a common issue on some types of older wind turbines.

EMC

In Europe there are strict guidelines regarding EMC. If you want to be sure that the active filter does not interfere, the filter must be fitted with a properly tuned EMC-filter.

De-rating

An Active Harmonic Filter’s rating is normally defined at nominal load, meaning at 50/60Hz. As the filter works further up the harmonics its capacity compared to nominal starts to de-rate. The de-rating curve is documented by all serious suppliers and should be available if you ask them.

A de-rating of 50%, at say the 13th harmonic, means that a 100A filter only has the capacity to compensate 50A at the 13th.  Naturally if you have harmonics of higher order it becomes more important to check the de-rating.

De-rating is a matter of how robustly the filter is designed. Some suppliers offer zero de-rating up to the 7th before capacity starts to fall.

Physical Footprint – How Much Cabinet Space is Required?

Most active filter suppliers offer several alternatives regarding installation. Wall mount, Cabinet and IP00 modules to install in cabinets. Efficient use of cabinet space translates to lower system cost. Some filters have a modular design and can be enhanced with further capacity without adding to the footprint.

Modularity

As mentioned, a modular design of your Active Harmonic Filter enables you to adapt the filter to potential changes in your future power compensation needs. The modular design means that you can easily add to the filter’s capacity within the existing cabinet, saving both cost and space.

Commissioning Software

Does the filter have built in commissioning software?  Commissioning and service of Active Filters can be quite time consuming. Ask for a review of the support software included in the machine. Some suppliers have an extra charge for the necessary software. Minimum required functionality should be that the system performs a self-check of Voltage and CT phase order, CT polarity check, self-diagnosis, and self-calibration. Such features will quickly find installation errors before they can cause problems and will also shorten the needed commissioning time.

If the filter does not have this type of support software the commissioning becomes much more complex and might even require external support adding to the system cost.

HMI

There are different HMI setups. Some have a very simple front HMI while others include graphs showing the current and voltage waveforms and many further functions. A great added value is to have at least a web-based interface allowing in-depth monitoring and control functionality. Then no extra PQ-meter is necessary.

Smart Grid Functionality

Active filters have a built in rudimentary power and power quality meter to calculate the required compensation. Some filter manufacturers make use of this fact and enable the user to connect all filters on site and company wide through a web based architecture.  An operator can then have an overview of the status of all connected cabinets and log them. This enables the possibility to log events that could or should have caused production disturbances, status monitoring of individual filters as well as remote control capability.  Email and text alerts to dedicated service personnel from the filter reduce response time dramatically.

IP/NEMA Class and Water Cooling

Water-cooled Active Filters enable very good cooling of the IGBTs, the most critical component in the Active Filter. Water-cooling reduces overheating immensely, which increases availability in the same way as for Variable Frequency Drives. The power density of the installation is also improved.

Voltage

Active Harmonic Filters are offered in a range of voltages.  Most common ranges are 380–415V, up to 480 V. Higher voltages up to 600 and 690V are also available without step-up transformer, reducing foot print. Some suppliers have the capacity to supply MV ratings as well, normally using a step-up transformer. The active filter can then act as STATCOM.

Battery add-on

In recent years several suppliers are offering battery connectivity to create a battery energy storage system for FCR and peak shaving. The active filters on-load capabilities are perfect for grid connectivity applications.

Sensorless Voltage Control

Recently a new type of sensorless solution make it much easier to install as no CTs are required which is standard for active harmonic filters. This method can not control specific frequencies but can be used to even mitigate noise from the grid.

Resonance Damping

Some filters offer resonance damping making them ideal in highly complex situations.

Multimaster

When building large systems with several filters acting together they are normally controlled by a master filter. In these cases some suppliers provide a multimaster option. In case the master-filter fail, another filter take up the master role and the system as a whole can continue filtering.

Power Losses and Low Harmonic Drives

Using the active filter in shunt applications has a lot of energy saving potential compared to using serial filters – either passive or active front end.

Here are some examples and what they mean to you as user. When seen as a system, the active filter in shunt mode offers a total system loss that is lower than that of the passive filter.

Passive Harmonic Filters

A passive filter has between 0.6-1.5% losses

Assuming a 6-pulse drive has 2% losses, the total system loss is the sum of the losses

Pdrive*PFilter = 2% + (1.5 <-> 0.6)%  =>  3.5% to 2.6% total system loss.

NOTE! This does not include an eventual voltage drop through the passive filter and its effect on the motor’s losses.

Serial Active Filter – Active Front End

An active front end drive essentially has twice the loss of a standard drive as the power has to pass through two IGBTs.

Pafe = 2% + 2% + 1% for the LCL-filter = 5% losses. Total system losses observed in documentation are 4.7-5%.

Shunt Active Filter – Commonly named Active Harmonic Filter

Unlike the serial solutions the shunt active filter only has to be sized according to the harmonic currents to be filtered out. Under normal conditions this means that in a IEEE-519 or G5/4 application the filter has to be sized 15-30% of the 6-pulse load.  This means the total system loss is also much lower even though the efficiency of the Active Filter is:

Pdrive + Padf = 0.02 + 0.02* (0,15 – 0,3) = 2.3 – 2.6 % in total system losses.

Summary from a System Owner’s View

Shunt Active Harmonic filters offer between 0 and 1.17% points lower power consumption compared to Passive Harmonic Filters.  This does not include any effect from voltage drop through the serial passive filter.

Shunt Active Harmonic Filters offer between 2.7 – 2.4 % lower power consumption compared to Active Front End drives.

Power Losses are a Significant Part of Your Life Cycle Cost Calculation

Minimising losses over time, especially in industrial process loads with more than 8000 hours of yearly operation, 1%-point saving in power consumption translates into significant value.

(Pdrive + Pcooling) (kW)* Yearly operation hours(h)*Net Losses(%) = Total cost saving potential

Energy Cost Estimate

Electrical power prices differ but the relation between cooling and electricity is roughly equivalent to

Pcooling = 0.3 * Pdrive

In the case of the AFE there are cases where the entire harmonic mitigation solution has been paid off in 2.5 years simply by choosing shunt Active Harmonic Filters instead of Active Front End thanks to lower power losses.

The Active Harmonic Filter is very competitive compared to both Passive filters and Active Front End. As the capital expenditure is very similar, a lower power consumption make the AHF a very good overall choice.

Furthermore the availability offered by a shunt installation where the drive can continue to operate even though the mitigation has failed offer a great upside through higher availability of the process.

Applications of Active Filter Technology

English: The , also known as the Green Mountai...

Wind Energy (Photo credit: Wikipedia)

Active Harmonic Filter Technology have many potential applications where its use can offer plenty of benefits. Active Filters have been proven to provide lowered disturbances, lower carbon dioxide emissions through improved energy efficiency, lower current consumption and increased production stability to name a few. Just as other technology has evolved, so have various production technologies. Today’s semiconductor loads require far more sophisticated solutions than was necessary in the past – a need met by modern Active Filtering technology.

Some of the most common applications for Active Harmonic Filters are:

Variable Speed Drives

The most common application for Active Filters is the compensation of harmonics generated by variable speed drives, often referred to as VFDs or Frequency Converters. Drive systems have the benefits of lower losses and increased production flexibility at the cost of higher harmonics emissions. Harmonics emissions make passive compensation unsuitable. Active harmonic filtering, especially with a modular approach, allows successive installation and mitigation of selected harmonics.

Welding Plants

Electrical welding systems place uneven demands with extremely high peaks in current demand during short periods. The resulting highly fluctuating voltage levels cause flicker. Flicker emissions can cause disturbances with other electrical consumers such as neighboring industries or residential areas and can cause reliability issues with nearby equipment. Active Filters can mitigate Flicker.

Furnaces

Furnaces and casting processes are known to give rise to both flicker and harmonics. This is largely due to being some of the most energy intensive production processes today. Active Filtering technology is ideal to combat both of these issues to increase production stability and reduce effects on the grid.

Wind and Solar Power Systems

A major problem inherent in many renewable energy sources today is the inconstant load delivered to the grid. Both wind and solar energy is delivered as wind and sun is available, causing surges of energy that the existing grid is usually not built for. The remote location of these energy plants also means that grid connections are suboptimal.

Wind power systems cause flicker, harmonics or interharmonics as well as other problems. Solar power plants cause harmonics and interharmonics. In some cases, especially in weaker networks, resonances may be excited by the harmonic output of the solar inverters. Modern Active Filtering technology is very effective in combatting these problems; reducing the stress placed on the grid and making these renewable energy sources more effective and widely viable.

Lighting

Light systems can cause harmonics that heat neutral conductors and disturb nearby equipment. This can mean production disturbances and unnecessary maintenance costs. Modern energy saving lamps may be more likely to cause disturbances depending on type. Active Filters are well suited to combat these problems.

UPS Systems

UPS or Uniterruptible Power Suplies can save lives as well as data and financial loss. A UPS system connected to a network polluted with harmonics can malfunction and has a shortened life span. Connecting an Active Filter to secure uninterrupted power supply will ensure production uptime.